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ABSTRACT 

Extending the Levy-Steinitz rearrangement theorem in R", which in 

turn  extended Riemann's theorem, Banaszczyk proved in 1990/93 tha t  a 

metrizable, locally convex space is nuclear if and only if the domain of 
sums of every convergent series (i.e. the set of all elements in the space 
which are sums of a convergent rearrangement of the series) is a translate 
of a closed subspace of a special form. In this paper we present an ap- 
parently complete analysis of the domains of sums of convergent series in 
duals of metrizable spaces or, more generally, in (DF)-spaces in the sense 
of Grothendieck. 
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In troduct ion  

For a convergent series ~ ( u k )  in a locally convex space E the domain of sums 

S(~-](Uk)) is the set of all x e E which can be obtained as the sum of a convergent 

rearrangement of ~(uk) .  In terms of this notion Riemann's famous rearrange- 

ment theorem states that  in the real line ~ the domains of sums are either single 

points or coincide with the whole line. Later Levy [L] and Steinitz IS] extended 

Riemann's  result to finite dimensional spaces: domains of sums in ~'~ are afflne 

subspaces - -  more precisely, for each convergent series ~-~(uk) in R n 

o o  o o  

S ( E ( u k ) ) = E U k T { y  E ]Rn[ ( x , y ) = 0  for all x E R n with Z I(x'uk>l<c°}; 
k = l  k----1 

we refer to this result as the "Levy-Steinitz theorem" (see [Ro] and [KK] for 

a proof). For the "state of art" of this theorem in infinite dimensions (in par- 

ticular, in Banach spaces) see the recent monograph [KK] of M.I. Kadets  and 

V.M. Kadets.  

The  following notation is basic to the understanding of domains of sums in 

infinite dimensional spaces: for each convergent series ~(Uk) in a locally convex 

space E define the set 

:= {x' • E'  I • t l}  c E' 

and its polar 

Fm (:~-'~(Uk)) := {x • E Ix'(x ) = 0 for all x '  • F ( E ( u k ) )  } C E. 

Obviously, both  sets are subspaces of E '  and E,  respectively, and the second one 

is even closed. It  is an easy exercise to check the following remark which is useful 

later (for E = N '~ see also [CC, Thin. 1]): 

REMARK: Let E be a locally convex space and ~ ( u k )  a convergent series. Then 
for each x • E the following axe equivalent: 

(1) x • ~-~k~=l Uk + F -L (E(Uk)), 
(2) Vx' • E' 3 permutation ~r of N:  x'(x) = ~ = 1  x'(u,(k)). 

In two papers [B1], [B2] from 1990 and 1993 Banaszczyk proved the following 

extension of the Levy-Steinitz theorem - -  a result which here will be quoted as 

"Banaszczyk's rearrangement theorem": 

A metrizable, locally convex space E is nuclear if and only if the domain 

of sums of each convergent series ~(uk)  in E is given by the formula 
o o  

k = l  
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in particular, S(~-](uk)) is a closed, affine subspace of E, and for each 
x c E :  

\ ~ . . . . ~ t  x z ! 

The aim of this paper  is to investigate the domains of sums in duals of metriz- 

able spaces or, more generally, in (DF)-spaces in the sense of Grothendieck (in 

fact, in [KK, p. 101] the authors write that  "Steinitz-type problems for locally 

convex spaces are poorly investigated"). Almost all natural  spaces of functions 

and distributions are metrizable spaces, or duals of metrizable spaces or, if not 

of this type, then at least "generated" by spaces of this type. The only infinite 

dimensional (DF)-space for which the Levy-Steinitz theorem was known to hold 

is the countable direct sum ~ := ~ N  ]R of copies of the scalar field ]R (this space 

is the strong dual of the nuclear Fr@chet space w := 1-IN JR); we refer to [KK, 

Ex. 8.3.3]. Implementing the basic ingredients of [B1] and [B2] in an alterna- 

tive way into locally convex spaces, we are able to say precisely which parts  of 

Banaszczyk's  theorem transfer to duals of metrizable spaces and which don' t .  

Let us briefly describe the content of this article. After a short sketch of Ba- 

naszczyk's theorem in section 1, we show in section 2 the following rearrangement 

theorem: if E is the dual of a nuclear, metrizable space, then each domain of 

sums S(~-~(uk)) is the translate of a subspace of E of a special form: 

C ~  

--  Z + • 
k = l  

If E is not isomorphic to ~, then there is a convergent series whose domain of 

sums is not closed - -  in particular, the Levy-Steinitz theorem in its original 

formulation does not hold in the dual of a nuclear, metrizable space unless this 

space equals the trivial space ~. In section 3 it is proved conversely that  if E is 

a dual of a nonnuclear metrizable space, then there is a convergent series whose 

domain of sums does not have this special form. 

An analysis of our approach using local convergence and bounded sets permits 

to show tha t  in a much larger class of (nonmetrizable) spaces the domain of sums 

of all convergent series are affine subspaces; this class includes, for example: 

the space H(K) of germs of holomorphic functions on a compact  set K,  the 

space of Schwartz tempered distributions S' ,  the space $ ' (~ )  of distributions 

with compact  support,  the space :D(~) of test functions for distributions, the 

space :D'(~) of distributions, the space A(~) of real analytic functions and its 

dual A'(~t), for an open subset ~ of ]R g .  
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Prel iminaries  

We shall use standard notation and notions from the theory of locally convex 

spaces and Banach spaces (see e.g. [BPC], [G], [Ja], [Ju] and [MV]); for the 

theories of operator ideals and s-numbers see [g], [P2] and [P3]. All locally 

convex spaces E are real, by cs (E) we denote the collection of all continuous 

seminorms, and by 13(E) all absolutely convex, closed and bounded sets of E.  

The dual E '  endowed with the topology of uniform convergence on all bounded 

sets is denoted by E L. A sequence (Pn) in cs (E) (or (Bn) in 13(E)) is said to 

be a fundamental system of cs (E) (or B(E)) whenever it is increasing (natural 

order) and for each p E cs (E) (or B C 13(E)) there is n such that  p < Pn (or 

B C B,~). Recall that a locally convex space is metrizable if and only if it allows 

a fundamental system (p~) of cs (E), and a locally convex space E is said to be 

a (DF)-space if it has a fundamental system (Bn) of B(E) and, moreover, each 

intersection of any sequence of closed, absolutely convex zero neighbourhoods in 

E is again a zero neighbourhood, provided it absorbs all bounded sets. Strong 

duals of metrizable spaces are (DF). For a seminorm p on a vector space E 

we write Ep for the normed space (E/kerp, t[" lip), [I x ~- kerp[Ip := p(x), and 

for an absolutely convex set B C E the seminormed space (spanB, ms),  m s  

the Minkowski gauge functional, is denoted by EB. The canonical surjection 

E ----+ Ep and injection EB ~ E are denoted by 7rp and iB, respectively. Clearly, 
O 

we have BEs C B C BEB for the open and closed unit ball of Es .  The set B 

is said to be a Banach or Hilbert disc whenever E s  is a Banach or Hilbert 

space. For a locally convex space E and B E B(E) the natural embedding i s  

is continuous, hence B -- BEB (B is closed in EB). In complete spaces E all 

B e B(E) are Banach discs (see [BPC, 5.1.27] or [MV, 23.14]). m locally convex 

space E is called nuclear if for each p E cs(E) there is p < q e cs (E) such that  the 

canonical linking map lr p : Eq ----+ Ep is nuclear, and E is said to be co-nuclear 

if its dual is nuclear or, equivalently, for each B E I3(E) there is B C C E/~(E)  

such that  the embedding i v : EB ¢--+ Ec is nuclear. Metrizable spaces and (DF)- 

spaces are nuclear if and only if they are co-nuclear, and nuclear Fr6chet spaces 

and complete nuclear (DF)-spaces are in a one-to-one relation with respect to the 

correspondence E > E L (see [Ju, 7.8.2]). For further details on nuclearity we 

refer to [Ju], [MV] or [P1]. A sequence (xn) in a locally convex space E is said to 

converge locally whenever it is contained and converges in some EB, B C B(E). 

A locally convex space E satisfies the strict Mackey condition (see e.g. [BPC, 

5.1.29]) if given any B E B(E) there is C C B(E), C D B, such that  E and 

E c  induce the same topology on B. Clearly, in every locally convex space with 
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the strict Mackey condition every convergent sequence converges locally. Every 

metrizable space satisfies the strict Mackey condition ([BPC, 5.1.30]) as well as 
every complete nuclear (DF)-space (use e.g. [Ju, 7.3.7]). 

1. On  B a n a s z c z y k ' s  r e a r r a n g e m e n t  t h e o r e m  for nuc lear  Frdchet  s p a c e s  

For later use (and in order to set up some further notation) we want to give 

a short sketch of the proof of Banaszczyk's rearrangement theorem (which still 

follows the line of the original proof of Steinitz for ll~n). 

Let }-:~(uk) be a convergent series in a locally convex space E. The extended 

domain of sums S e (}-~(uk)) is defined as the set of all x C E which appear as 

limits of convergent subsequences of rearrangements ~ (u~(k)). Moreover, let 

m m 

where 

and 

Zm(E(Uk))  := { E U k  [ I C {m ,m  + 1, . . .}  finite }, 
I 

AE(E(Uk) )  := A Z  E and QE(E(Uk))  := ~-) c-5-Z-~ E. 
m m 

The proof of part (a) in the following result is elementary (for a more general 

formulation for abelian Hausdorff groups see [Bo, Ch. III, §5, Ex. 3]), and (b) is a 

consequence of an easy Hahn-Banach, argument (check the proof of [B1, Lemma 
6] or see [B1]). 

LEMMA 1.1: Let ~(uk)  be a convergent series in a locally convex space E. Then 

(a)  S e ( E ( U k ) )  : E k % l  Uk -~- A E  (E(Uk))'  whenever E is metrizable; 
( b )  = 

In the metrizable case this obviously gives the following chain of equalities and 
inclusions: 

LEMMA 1.2: 

(B1) 

(B2) 

Let ~-~(uk) be a convergent series in a metrizable space E. Then 

: Z uk + (Z(uk)) 
k=l 

O 0  

k : l  



136 J. BONET AND A. DEFANT Isr. J. Math. 

o o  

: E . k  + r l ( E ( u k ) )  
k=l  

In nuclear metrizable spaces the inclusions (B1) and (B2) are even equalities 

- -  these are the crucial steps in Banaszczyk's paper [B1]. The proofs are conse- 

quences of the following two lemmas (which are variants of [B1, Lemma 4 and 

Lemma 8]). Here HS(T: X ) Y)  means the Hilbert-Schmidt norm of an 

operator T acting between the Hilbert spaces X and Y. 

LEMMA 1.3 (the "lemma of rounding off coefficients"): Let H1 and H2 be two 

Hilbert spaces such that H1 C H2 and 

HS(id : H1 ~ / t 2 )  ~ 1. 

Then foryx , . . . , y8  G BH1 a n d y E  c o { ~ , j y k  I J C { 1 , . . . , s } }  thereisaf ini te  

set I C { 1 , . . . , s }  such that 

E Yk -- Y E BH2. 
I 

LEMMA 1.4 (the "permutation lemma"): Let Hk, k = 1,2,3, be three Hilbert 

spaces such that H1 C H2 C Ha and 

HS(id:  HI ¢-+ H2) _< 1, HS(id:  H2 ~-~ H3) < 1/2. 

$ 

Then for Vl, . . .  ,v~ E BH1 and a E BH2 with a + ~k=l  vk C BH2 there is a 

permutation a of {1, . . . ,  s} such that 

m 

a + E V ~ ( k )  EBH3 f o r a l l m = l , . . . , s .  
k=l  

2. T h e  r e a r r a n g e m e n t  t h e o r e m  for nuc lear  (DF)-spaces  

In this section we will analyze the domain of sums of convergent series in complete 

nuclear (DF)-spaces E. Clearly, R n and ~ = (~N R are examples of complete 

nuclear (DF)-spaces for which the Levy-Steinitz theorem holds - -  and we will 

show that  these are in fact the only ones with this property, although all domains 

of sums in complete nuclear (DF)-spaces turn out to be affine subspaces. 

Take a convergent series Y~(Uk) in a nuclear (DF)-space E, and recall from 

the preliminaries that  it converges locally, i.e., there is some B E B(E) such that  
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~ ( u k )  converges in EB. Moreover, let (Bn) be a fundamental system of B(E)  

such that  B1 = B. Then it follows from Lemma 1.2 that,  for each n, 

s 

k = l  
O ~  0 ( 3  

k = l  k = l  

where the index Bn indicates that  we consider all sets involved with respect to 

the convergent series Y](uk) in EBn. We obtain as an immediate consequence 

that  

(BI ' )  

(B2') 

Define 

n 

S e 

n 

oo 

k : l  n 

k : l  n 
OO 

_ F j -  - + U  
k : l  n 

n 

and observe tha t  this set is independent of the bounded set B and the fundamen- 

tal system (Bn) we chose at the beginning. Since the sets F ± form an increasing Bn 

family of subspaces of E,  the set Fllo~ is even a subspace of E.  

THEOREM 2.1: Let E be a complete nuclear (DF)-space. 

(a) For each convergent series E ( u k )  in E the domain of sums S ( E ( u k ) )  is 

atone subspace of E; more precisely: 

O 0  

k:l 

(b) Assume E to be infinite dimensional and not isomorphic to ~. Then there 

is a convergent series ~ ( u k )  in E such that the domain of sums S ( ~ ( u k ) )  
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is a nonclosed subspace of E; in particular: 

OO OO 

k : l  k = l  

As in the metrizable case statement (a) will follow from the fact that  the above 

inclusions (BI')  and (B2') are even equalities. To prove this, it is necessary to 

adapt the lemma of rounding off coefficients and the permutation lemma (1.3 

and 1.4 of section 1) to the (DF)-setting, and this is done in the following two 

lemmas: 

LEMMA 2.2: Let E be a vector space and Bo C B C C three Hilbert discs in E 
such that 

Hs(iBo: Eno ~-~ EB) <_ 1, Hs(iC: EB ¢-~ EC) <_ 1/2. 

Then for each convergent series ~-~(uk) in EBo 

Proo~ Take 

c sc(Z(u )) 

jm 

x : lim ~ u ~ ( k )  E SeB(E(Uk)) 
m---~oo ~ - - 

k = l  

(convergence in EB) and extract an increasing subsequence (jm(e))e_>2 of (jm) 

such that  for all f > 2 

X,(k) E 1/gBo for all k = jm(t) + 1, . . . , jm( t+l ) ,  

J,~(e) 

x -  E u,~(k) E 1/~B, 
k = l  

Jm(e+ l )  

x -  ~"  u,~(k) ~ 1/eB; 
k = l  

this is possible: take first ko such that  

U,(k) E 1/2B0 for all k >_ k0, 

and then mo such that Jmo > ko and 

j r n  

x - E u,(k) E 1/2B 
k : l  

for all m _> too. 
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j rn  

k = l  

Put m(2) := mo. Then for m > m(2) 

u~(k) C 1/2B0 for all k > Jm(2), 

for all m 2 m(2). 

Select now m(3) > m(2) such that 

Then 

u,~(k) c 1/3B0 for all k > Jm(3), 

jm 

x - E u ~ ( k )  e ll3B for a l lm>_m(3) .  
k = l  

u,(k) E 1/2B0 for all k = Jm(2) + 1,.. . ,Jm(3), 

J~(2) 

x -  E u,(k) E 1/2B, 
k = l  

Jm(3) 

x -  E U,(k) e 1/2B, 
k = l  

etc . . . . .  Consider now the Hilbert discs 

1/gBo C 1/gB C 1/f.C. 

Clearly, 

HS(E1/tBo ¢-~ E1/eB) _< 1 and HS(E1/tB ~ E1/tc) <_ 1/2. 

Hence, by Lemma 1.4, for each g >_ 2 there exists a permutation ae of 

7r{jm(e) + 1 , . . .  ,Jm(t+l)} such that for all m = Jm(t) + 1, . . .  ,jm(e+l) 

J~(e) 

k = l  k=jm(o+l 

Clearly, this gives a permutation 0 of N such that (convergence in Ec) 

O(3 

x = ~ ue(k), 
k = l  

h e n c e  x . 
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LEMMA 2.3: Let E be a vector space and Bo C B two Hilbert discs in E such 
that 

HS(iBo: E ,  o ~ EB) <_ 1. 

Then for each convergent series ~(uk)  in EBo 

= 

Proof." According to the definitions AB C QB. Take x fL AB. This means, there 

is mo such that 
--EB 

x ~ Z m for all m > m0. 

Choose c > 0 such that  

(x + ~B) n Z.,o = 0, 

and ml > m0 such that  

ukE¢/2Bo  for a l l k > m l .  

We will show that  

(X "4- ~/2/~) n co Zml  = O, 

hence x ~ QB. If this is not the case, then there is 

z ~ (x + ~ /2B)  ncoZm~. 

Since HS(E~/2Bo ~ Ee/2B) <_ 1, by Lemma 1.3 there is EC Z,~, with 

z - E C ¢/2B, 

hence 

EE ( z + e / 2 B )  nZm,  C ( x + c B )  nZmo, 

a contradiction. I 

Now we are prepared to give the 

Proof of part (a) of Theorem 2.1: Let ~ (uk) be a convergent series in a complete 

nuclear (DF)-space E. Take a fundamental system (Bn) of B(E) such that }-'~(uk) 

converges in EB1, all Bn are Hilbert discs and 

Hs(iB~+': EB~ ~-+ EBb+, )<1/2  for a l l n  

(see the preliminaries and combine e.g. [Ju, 7.8.2(4)] with [Ju, 7.6.3(3)]). Then 

the inclusion (BI')  by Lemma 2.2 and the inclusion (B2') by Lemma 2.3 are 

equalities which gives the claim. I 
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This proof obviously allows collecting a bit more information about domains 

of sums in nuclear (DF)-spaces: 

REMARK 2.4: Let ~-~(uk) be a convergent series in a complete nuclear (DF)- 

space E, and (B~) a fundamental system of IS(E) such that ~.(uk) converges in 

EB1. Then 

=UsBo = U  
n n 

o o  o o  

= + UAB  = + UQB  
k = l  n k = l  n 

o o  o,o 

- -  F ± 
k = l  n k = l  

The proof is clear from what was said before (note that all unions are indepen- 

dent of the fundamental system (B~) which hence can be chosen as in the above 

proof of 2.1 (a)). 

It remains to give a 

Proof of part (b) of Theorem 2.1: The nuclear Fre~chet space F := E L is not 

isomorphic to w := 1-IN ~ (recall that E is reflexive). Accordingly, we can apply 

[DV, Theorem 5] to conclude the existence of a quotient G of F which has a 

continuous norm II" [[, but is not countably normable (a projective limit with 

injective connecting mappings). We choose a fundamental system ([[. IIn) of 

seminorms in G such that  I1" I[ -< I[" I[1 and all the completions of the normed 

spaces (G, I1" [In) are separable and reflexive (see e.g. [Ju, 7.6.3]). Since F and 

G are nuclear Fr~chet spaces, it follows that H -- G~ is a closed, topological 

subspace of E =- F~. For each n define 

B~ := {x e G I Ilxlln _< 1} 0 c H(polar  in H)  and /In := HB~. 

We have H := indn Hn, and since I1" II1 is a norm on G, the Banach space H1 is 

dense in H.  As G is not countably normable, we can apply [BMT, 2.9 and 2.6] 

to conclude 

" S = H.  
n 

By [KK, Ex. 3.1.5], since H1 is separable, there is a convergent series ~ ( u k )  in 

H1 such that  its domain of sums in H1 coincides with H1. The domain of sums 

S(~ (uk ) )  in U is a subspace of H,  which contains H1 but is not closed; indeed, 
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if it is closed, it must coincide with H.  On the other hand, 

s(~ /~) )  ~ U s . o ( ~ ( ~ ) ) ~ U ~ ,  "~ ¢ ~.  
n 

This is a contradiction. | 

In view of the remark made in the introduction the following consequence of 

2.1 (b) seems to be notable: 

COROLLARY 2.5: Let E be a complete and infinite dimensional, nuclear (DF)- 

space which is not isomorphic to ~. Then there is a convergent series ~ ( u k )  in 

E and some x C E such that for all x'  6 E '  there is a permutation 7r of N with 

x'(x) = Zx ' (u~ ik / ) ,  

but x ~ s(X;(~k)). 

We finish this section showing that  our approach to the Levy-Steinitz type 

theorems via local convergence and bounded sets covers a much larger class of 

spaces than only nuclear (DF)-spaces - -  it turns out that  co-nuclearity and not 

nuclearity is the appropriate assumption needed. 

Let E be a locally convex space in which every sequence converges locally, and 

let ~ ( u k )  be a series in E which converges in, say, EBo. Denote all absolutely 

convex and bounded supersets of B0 by B. Clearly, 

s(E(u~))=Os.~Os~ 
B 
o o  

= Z u ~ + U A .  
k = l  B 

o o  

Z ~ +UQ" 
k = l  B 

o o  o o  

= Z~k +Ur~ =: Y2~ + r,~o~(~(~)), 
k = l  B k = l  

± • 
where the notation of all new symbols is obvious; again the set Flo¢ is independent 

of the choice of B0, and it can easily be shown that  it is even a subspace of E.  

Another application of 2.2 and 2.3 gives the following extension of part  (a) of 

Theorem 2.1: 
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THEOREM 2,6: Let E be a complete, co-nuclear space for which each convergent 

sequence converges locally. Then the domain of sums of each convergent series 

~ ( u k )  in E is an al~ne subspace, 

OG 

Z + r, oc - 
k : l  

Before we give a list of new examples of spaces such that  each domain of 

sums is affine, let us show that  the preceding result even covers Banaszczyk's 

rearrangement theorem for metrizable spaces. For this it suffices to check the 

following remark, since a metrizable space is nuclear if and only if it is co-nuclear, 

and each convergent sequence in a metrizable space converges locally (see the 

preliminaries). 

REMARK 2.7: For each convergent series ~ ( u k )  in a metrizable, locally convex 

space E 

r l ( E ( u k ) )  : 

Proof: Clearly, by 1.1 

= = n CO Z m 

B B m 

cn E=r 
m 

hence take x E Nm C ~ m  E" If (Un) is a decreasing basis of zero neighbourhoods 

in E,  then for every m there is 

zm ~ coZ.~ n (x + U.J.  

In particular, xn - - ~  x in E,  and therefore x n ~ x in some Ec .  Since 

coZ,~ D coZm+l,  the sequence (x~),~>m is contained in coZm for all m, hence 
X E CO Zm EC for all m. | 

As announced, we finally give a list of natural examples: 

Examples 2.8: 

1. A Khthe matr ix  A = (an)n is a sequence of scalar sequences satisfying 

0 < an(i) <_ an+l(i) for each n, i. The Khthe echelon space associated with 

A is the l~'@chet space defined by 

i 
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endowed with the metrizable, locally convex topology generated by the funda- 

mental system of seminorms (p~). The space A1 (A) is nuclear if and only if for 

each n there is m > n such that  (an(i)/am(i)) i • 61. If £1(A) is nuclear, then 

its strong dual is the complete nuclear (DF)-space 

A,(A)~ = k~(A) 

= { u C R  N Sn: llulln :=suplu(i)l/an(i ) < oc}. 
i 

In fact, AI(A)~ = ind~ /~ (1 /an )  is an (LB)-space and its topology can be 

described by the seminorms 

pv(u) := supv(i)lu(i)l 
i 

as v varies in the set of nonnegative sequences such that  (an(i)v(i)) i E ~ for 

all n. For more details and examples we refer to [Bi] and [MV]. One of the 

most important examples is the space s of rapidly decreasing sequences, which 

corresponds to A I(A) for the KSthe matrix (an (i)) :-- (i~). The space of Schwartz 

tempered distributions S p on R N is isomorphic to s'. Moreover, Ca[0 ,  1] and 

:D(K), K a compact subset of RN with nonempty interior, are isomorphic to s. 

2. Let K be a nonvoid compact subset of C N. The space H(K) of germs of 

holomorphic functions on K is a complete nuclear (DF)-space. Its topology is 

described as a countable inductive limit of Banach spaces in the following way: 

let (/-In) be a decreasing basis of open neighbourhoods of K satisfying Un D Un+l. 

Let 

in: H~(U,~) ~ H°°(Un+i) 

be the restriction map which is absolutely summing. Then 

H(K) = indn H°~(U~). 

3. An (LF)-space E - indn En is a Hausdorff countable, inductive limit of an 

increasing sequence of Fr6chet spaces. An (LF)-space is called strict if every space 

En is a closed topological subspace of En+l. In this case, each En is a closed 

topological subspace of E,  and every convergent sequence in E is contained and 

converges in a step En. Accordingly, if E = indn En is a strict (LF)-space 

and each step E~ is nuclear, we can apply Banaszczyk's original theorem to 

conclude that  the domain of sums of each convergent series in E is given by 

the same formula. The most important example is the space of test functions for 

distributions 7P(ft) on an open set ft C ]R N . By a result of Valdivia [Va] and Vogt 
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[V], D (f  t) is in fact isomorphic to a countable direct sum s (N) of copies of the space 

s. We observe that the space ~)(~)(f~) of test functions for ultradistributions of 

Beurling type on an open subset f~ of R N is also a strict (LF)-space (see [BrMT]). 

4. By the sequence space representation of Valdivia [Va] and of Vogt IV], the 

space of distributions ~D'(t~) on an open subset gt of ~ g  is isomorphic to a count- 

able product (s') • of copies of the space s'. Therefore, it is a complete co-nuclear 

space. Moreover, by the permanence properties of the strict Mackey condition 

(see [BPC, 5.1.31]), every convergent sequence in D'(ft) converges locally, and 

our Theorem 2.6 can be applied to D'(ft). More spaces have a similar structure: 

the space of ultradistributions T~I~ ) (f~) of Beurling type and the space £{~} (ft) of 

ultradifferentiable functions of Roumieu type on an open subset t~ of R g are also 

complete co-nuclear spaces which are the countable, projective limit of complete 

nuclear (DF)-spaces. In particular, they are subspaces of countable products of 

complete nuclear (DF)-spaces, and again the permanence properties of the strict 

Mackey condition ensure that Theorem 2.6 can be applied. We refer to [BrMT]. 

5. The space A(ft) of real-analytic functions on an open subset ~ of R g is 

endowed with a locally convex topology as follows: A(~) = projg  H (K ) ,  as K 

runs over all the compact subsets of f~ and H(K)  is defined as in 2. Deep results 

of Martineau from the 60's (cf. [BDom]) imply that A(fl) is an ultrabornological, 

countable, projective limit of complete nuclear (DF)-spaces, and its dual A(ft)~ 

is a complete nuclear (LF)-space in which every convergent sequence is contained 

and converges in a step. Therefore, A(fI) and A(ft)~ are both complete co-nuclear 

spaces to which Theorem 2.6 can be applied (again these spaces satisfy the strict 

Mackey condition by the argument given in 4.). 

3. T h e  c o n v e r s e  

As already mentioned, Banaszczyk in [B2] proved the converse of his rearrange- 

ment theorem from [B1]. Modifying his cycle of ideas, we will obtain the following 

converse of our rearrangement theorem for nuclear (DF)-spaces from section 2 

(Theorem 2.1(a)). 

THEOREM 3.1: Let E be a (DF)-space such that each convergent sequence 

converges locally. If  for each convergent series ~ (uk )  in E 

~ 0  

k = l  

then E is nuclear. 
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We will first prove an appropriate characterization of nuclear (DF)-spaces 

which seems to be interesting in its own right. If  X is an n-dimensional 

Banach space, ,~  the Lebesgue measure on R '~ and ¢: R n > X a linear bi- 

jection, then 

vol~(A) := ) tn(¢- lA) ,  A a Borel set in X 

gives a measure on the Borel sets of X. Although vol,~(A) changes with ¢, the 

ratio vol~(A) vol~(B) -1 for two Borel sets A and B is certainly independent. For 

a linear bijection T: X > Y between two n-dimensional Banach spaces define 

v,~(T) := (vol~(TBx)/voln(By))1In; 

for a linear operator  T: X - -+  Y between two arbitrarily normed spaces set 

vn(T) := supv~(T: M ---+ TM),  

where n E N and the sup is taken with respect to all subspaces M of X such that  

d i m M  = d i m T M  = n; put v~(T) = 0 whenever rank T < n. For this definition 

and the following (later very important)  properties see [BB, Lemma 1] and also 

[B1]: 

(1) v,~(T) < IIT]I. 
(2) v~(TS) < v~(T)v~(S). 
(3) vn(RTS) < [IRI]vn(T)I]SH. 

(fl (4) vn(T) = n 6i(T whenever T acts between Hilbert spaces and 6i i : l  

stands for the i-th Kolmogorov number. 

(5) v,,(T) > hn(T), where h,~(T) stands for the n-th Hilbert number. 

Moreover, denote for each 0 < s < 1 the class of all operators T between 

normed spaces such that  

(n~vn(T)) E ~c~ 

by ~3e. Par t  (b) of the next proposition is implicit in [BB, Lemma 2]. 

PROPOSITION 3.2: Let 0 < ~ < 1. 
(a) Each composition of three 2-summing operators belongs to fO~. 
(b) The composition of k > 5/~ operators in 93~ is nuclear. 

Proof: (a) From Pietsch's factorization theorem we know that  such a composition 

factorizes through a nuclear operator T: Hi  ---+ H2, H1 and H2 Hilbert spaces. 

Hence it suffices to check that  T belongs to 93e: it is well-known that  (6k(T)) 6 £1, 

hence the assertion is an immediate consequence of 

n%n(T) (4) nC 6{(T) ~_ n ~ 6{(T). 
1 i=1 
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(b) For every composi t ion  T = Tk o . . -  o T1 of k >_ 5/e  opera tors  in ~ e  we have 

k 

supg%e(T) ~)_ suprlg%e(Td = :  c < o c .  

f i=1 

On the other  hand,  for each n 

n 
(~n(T) ~ ( H  (~g(T)) 1/n 

f=l 

(I] )),,n <_ n he(T 
~=1 

_ nve(T) )  . 
~=1 

(see the proof  of [P1, 12.12.3]) 

Together  we obta in  

(~I  124 5 \ 1/n n ?Z4~ 1/n 
(~n(T)n 3 < "~-e v,(T)) < C ( H  e5 ] 

t=l  ~=1 
) O: n > 00, 

which shows tha t  (~n(T)n)  E el, hence by [P2, 11.12.21 the sequence of approxi-  

ma t ion  numbers  (an(T))  ¢ el. It  is well-known tha t  this assures the nucleari ty  

of T (see [P2, 18.6.3]). I 

As an immed ia t e  consequence we obta in  the following corollary. 

COROLLARY 3.3: Let E be a locally convex space. Then the following are 

equivalent: 

(1) E is nuclear. 

(2) V0 < e < 1(30 < e < 1)Vp C c s ( E ) 3 p  <_ q e cs (E) : 7rP E file. 

Dually, the following equivalence holds: 

(1') E is co-nuclear. 

(2') V0 < g < 1(30 < e < 1)VB • B ( E ) 3 B  C C • B ( E ) :  i c • ~ .  

The  impl icat ion (2) r-. (1) was s ta ted in [BB, L e m m a  2]. For our purposes  we 

need a charac ter iza t ion  of nuclear (DF)-spaces  via volume numbers  which uses 

bounded  sets and continuous seminorms s imul taneously  - -  based on ideas of 

[Ju, 6.4.2] we prove: 

PROPOSITION 3.4: For every (DF)-space E the following are equivalent: 

(1) E is nuclear.  
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(2) V0 < ~ < 1(30 < e < 1)VB E B(E)Vp E cs(E) : ~pis E ~U~. 

Proo~ The proof of (1) r~ (2) is easy: clearly, in every nuclear space E each 

mapping 7rpiB can be written as a composition of three nuclear maps, hence 

7rpiB E ~]e for each 0 < e < 1 (Lemma 3.2). Conversely, assume that  (2) holds 

for some 0 < e < 1 and take a s e t  B E B(E). By Corollary 3.3 it suffices to 

show that  i v E ~ for some B C C E B(E). Take a fundamental system (Bn) of 

bounded sets such that  

B I : = B  and 2 B n c B ~ + I  for a l ln .  

Assume that  

in :---- iBB~ ~!Ue for a l l n > l .  

By definition, for every n there is a kn-dimensional subspace M~ of EB such that  

d imMn = diminM~ = k~ > k~- l ,  

It  is well-known (see e.g. [DF, 6.3]) that  for each n there is a subspace G~ of 

some e m(n) and a linear bijection 

j~: inM~ - -~  Gn, 

IlJ ll--- 1, 
[Ij~,l: G~ ~ i~M~ll <_ 2. 

By the Hahn-Banach theorem j~ has an extension j%: EB~ ) g~(") with equal 

norm, and we know fom [Ju, 4.3.12] that  there is an operator Qn E/Z(E,  g~(~)) 

such that  
IIQ , .o II < 2, 
IiQ,,h - jnhlI ~ < 1/4I]hIIEB ~ for all h E i~M~; 

summarizing, we get the following diagram: 

E 

EB ¢ is > L~B,, ~ ~ l~(n ) 
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W e  prove t ha t  Qn is invertible on inMn and 

) inMnl[ <_ 4; IIQ~ ~ : QninMn 

indeed, for h C inMn 

hence 

ilhI[EB~ - -1-  = ]lan 3,~h]iEs,. <-- 2]l j -h] l~ 

_< 211j.h - Q,~hlloo + 211Qnhll~ ~< 1/2llhllE.n + 211Qnhll~, 

[IhlIEB. <_ 4lIQnhIl~.  

The  norm es t imate  for Qn 1 can now be used to show tha t  for each n 

vk,,(Mn - ~  inMn)----Vk,~(Mn ~ inMn _2_% G. ~ inIVfn) 

hence 

and finally 

Define 
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-1 

<__ 2vk.~(Mn in) inMn Q'~) QninMn Q") inMn J% Gn) 

<_ 8vk,~(Mn i,~) inMn ~ QninMn), 

1/8n <_ 1/8k~vk~ (Mn A_~ inMn) 

<_ k~Vk., (Mn i,~) i~Mn Q") QninMn), 

iB 1/Sn <_ k~vk,~ (EB ~ E -~5 e:(n)). 

-1 
V := N Qn Beg(-) C E; 

N 

V absorbs  bounded  sets and is hence a zero ne ighbourhood in the (DF)-space  E:  

clearly, for each k there  is .~ > 0 such tha t  

k 
B k c A  N - 1  Qn Bt~(,~), 

n=l 

and for n > k we have 2Bk C B~, hence 

2Q,~Bk c QnBn C 2Bez¢..). 

Now observe t ha t  QnV c Be~(,,) for each n which assures tha t  there  are opera tors  

Qn: Ev > gm(n) wi th  [IQnll _< 1 and such tha t  the following d iag ram commutes :  

EB c iB > E Q") l~ (n) 

Ev 
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(as usual, Ev = Emv and Irv = ~r,w). Since by assumption (meVm(TrviB)) E 
g~,  we obtain a contradiction: 

1/8n < k~vk~(Q~iu) 

We need the following deep result of Banaszczyk [B2, Lemma 4] (which among 

others is based on Milman's quotient subspace theorem from local Banach space 

theory). Here gp(A) denotes the subgroup generated by a subset A of a group 

G; moreover, for a seminorm p on a vector space E we write Bp for the closed 

unit ball with respect to p, and dp(x, H) for the distance of x E E and H C E 

with respect to p. 

THEOREM 3.5: Let E be a vector 8pace and q >_ p two seminorms on E such 

that 

(q: Eq , Ep) ¢ ~ol .  

Then for each finitely generated subgroup G C E,  each a E s p a n G  and each 

~/ > 0 there is a finitely generated group G1 D G satisfying 

(1) a~ = gp(a~ n Bq), 

(2) dp(a, G1) >_ dp(a,G) - %  

The following consequence will be crucial. 

COROLLARY 3.6: Let E be a locally convex space, B E B(E) and p G cs(E) such 

that 7rpiB ~ ~0.1. Then there is a subgroup G of E such that 

(1) a = gp(a  n 1/.~ B) for all m, 

(2) 1 / 2 0 ¢ ~ P .  

Proof: Take a C EB such that  p(a) > 0 (IrpiB :fi 0!). Without loss of generality 

we may assume that  

p ( a ) = 2  and p<_l l - I [u  o n E u .  

Define the finitely generated subgroup Go := 2aZ of EB. Obviously, 

p ( a - 2 a z ) = 2 [ 1 - 2 z [  for a l l z E Z ,  

hence dp(a, Go) = 2. Clearly, (EB)p is an isometric subspace of Ep, hence the 

canonical map 

( ~ :  E ,  --~ (E,)p)  ¢ ~0.1. 
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By Banaszczyk's Theorem 3.5 there is a finitely generated subgroup Go C G1 c 

EB such that  
G1 = gp(G1 n B), 

dp(a, G1) >_ dp(a, Go) - 1/2. 

Next apply Banaszczyk's result 3.5 to G1,211" ]Is, 2p and 1/2: there is a finitely 

generated subgroup G2 D G1 such that 

G2 = gp(G2 N ~B), 

1 
1 hence dp(a, G2) > dp(a, G1) 22. d2p(a, G2) ~_ d2p(a, G1) - 2 '  

Proceeding this way, one gets an increasing sequence of finitely generated sub- 

groups Gn D G~-I  such that 

1 
dp(a, Gn) ~ dp(a, Gn-1) 2n. 

Define the subgroup 

of E. Then for all m 

a := U Gn 

G=gp(Gnl /mB) ;  

indeed, for m and x C G we have x E Gn for some n > m, hence 

x= E gi w i t h g i E G n N 1 / n B C G N 1 / i n B .  
finite 

Moreover, 2a E Go c G, but 

dp(a, a) = inf{dp(a, ak) I k e N} 
k 1 N} >inf{dp(a, G o ) - E -  ~ k e  

= 2 -  ~ = 1 ,  
g=l 

hence a ~ GP. 

Finally, we are prepared to give a 
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Proof of Theorem 3.1: Assume that E is not nuclear. Then we know from 

Proposition 3.4 that 

~piB ¢ ~o.1 

for some B E 13(E) and p E cs (E). Hence by Corollary 3.6 there are a subgroup 

G of E and an a E E such that 

(1) G = gp(G N l i m B )  for all m, 

(2) 2a C G, but a CGP. 

Take a fundamental system (B~) of B(E) such that B1 = B. By (1) we have 

for each m the following finite representations of 2a: 

s(m) 
m m 2a= w i , wi E G N 1 / m B .  

i = 1  

Define the series ~ ( u k )  by 

(~k)  :=  ( ~ , - w ~ , . .  1 1 ~ _ ~ , .  ~ • , Ws(1 ) ,  - - W s ( 1 ) ,  W l ,  , W s ( 2 ) ,  --Ws(2),*" .). 

Obviously, the series ~(Uk) is convergent in EB~ and we have (convergence in 

EB,) 
O(3 

0 - - - - ~ u k  and 2 a E A c U A B  .. 
k = l  n 

We now show that  a ¢~ U~ AB~ which then contradicts the fact that (by assump- 

tion and Remark 2.4) 

n 

is convex: assume that a C AB~ for some n. Since for all m 

Z m c g p { w ~  ] i = l , . . . , s ( k )  and k e N }  c G ,  

we get that  

~e A.o = N ~  ~o c V  ~o c V  ~, 
m 

a contradiction. | 

An easy analysis of the preceding proof gives slightly more: 

REMARK 3.7: Let E be a locally convex space such that for some B C B(E) and 

p E cs(E) 

~rpiB ~ ~o.r. 
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Then there is some EB-COnvergent series }-~(uk) and there is a ~ EB such that 

2 a E N Z m = A ,  a c N z P - - : A p .  
m m 

This remark shows that  our method also gives a new proof of the converse 

of Banaszczyk's  rearrangement theorem for metrizable spaces; indeed, if E is a 

nonnuclear, metrizable space such that  for each convergent series ~ ( u k )  

oo 

k = l  

then by Lemma 1.2 for each such series 

is a subspace. But this contradicts Remark 3.7, since Ap ~ AE ~ A and the 

following counterpart  of Proposition 3.4 assures the existence of an appropriate  

B and p. 

PROPOSITION 3.8: For every metrizable space the statements (1) and (2) of 

Proposition 3.4 are equivalent. 

Proof: Tha t  (1) implies (2) follows as in Proposition 3.4. Hence assume that  E 

satisfies (2) for some 0 < c < 1. Let p E cs(E); by Corollary 3.3 it suffices to 

show that  there is some p < q E cs(E) with ~rp E ~J~. Fix a fundamental system 

(Pn) of cs(E) such that  

pn _ pl - - - -  P for all n, 

and assume that  

7rn:=IrP ~ e  f o r a l l n > l .  

By definition for every n there is a kn-dimensional subspace M~ of Ep~ such that  

d imMn = dim ~rn Mn = kn > kn-1, 

k~vk~(r~ : M~ ~ r~M~)  > n. 

The canonical embedding in : Mn ~ Ep~ being of finite rank has a finite repre- 

sentation 

i~ : E ~  ~ ®7~pj(xj) C M: ® Ep . 

Define the operator  

n~ : :  y ' ~  ® xj: M~ ~ E; 
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clearly, in = 7rp~ Rn for all n, hence 

= k~vk~(Tr~in) = k~vk~(Tr~: Mn ~ ~rnM,~) > n. 

Then the closed, absolutely convex hull B of [.J~ RnBM~ is a bounded set in 

E; indeed, for k given, the set {x E E [pk(x) <_ 1} absorbs the bounded set 

~k  1 RnBM~, and for n > k 

RnBM~ C { x E E [ p ~ ( x ) ~ _ I } C  { x e E [ p k ( x ) ~ _ l } .  

Observe now that  R~BM~ C B for all n, hence there are operators R,~: Mn 

EB with norm _< 1 such that  

R n  7r p 
Mn >E ~E.  

commutes.  But  then 

n < k~nvk~(~rpRn) = k~vk~(TrpiBRn) < k~vk~(TrpiB) 

contradicts the fact that  ~rpiB E ~ .  | 
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