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ABSTRACT

Extending the Levy-Steinitz rearrangement theorem in R", which in
turn extended Riemann’s theorem, Banaszczyk proved in 1990/93 that a
metrizable, locally convex space is nuclear if and only if the domain of
sums of every convergent series (i.e. the set of all elements in the space
which are sums of a convergent rearrangement of the series) is a translate
of a closed subspace of a special form. In this paper we present an ap-
parently complete analysis of the domains of sums of convergent series in
duals of metrizable spaces or, more generally, in (DF)-spaces in the sense
of Grothendieck.
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Introduction

For a convergent series » (ug) in a locally convex space E the domain of sums
S (z(uk)) is the set of all z € E which can be obtained as the sum of a convergent
rearrangement of Y (ug). In terms of this notion Riemann’s famous rearrange-
ment theorem states that in the real line R the domains of sums are either single
points or coincide with the whole line. Later Levy [L] and Steinitz [S] extended
Riemann’s result to finite dimensional spaces: domains of sums in R are affine
subspaces — more precisely, for each convergent series > (u) in R®

S(Z(uk)):Zuk+{y € R”| (z,y) =0 for all z € R™ with Z ](x,uk)l<oo};

k=1 k=1

we refer to this result as the “Levy—Steinitz theorem” (see [Ro] and [KK] for
a proof). For the “state of art” of this theorem in infinite dimensions (in par-
ticular, in Banach spaces) see the recent monograph [KK] of M.I. Kadets and
V.M. Kadets.

The following notation is basic to the understanding of domains of sums in
infinite dimensional spaces: for each convergent series Y (ux) in a locally convex
space F define the set

F(Z(uk)) ={a' € E'| (z'(w)) e 4} C E'

and its polar

T (3 () = {z € E|2'(z) =0 forall 2’ e T} _(wx))} C E.

Obviously, both sets are subspaces of F’ and E, respectively, and the second one
is even closed. It is an easy exercise to check the following remark which is useful
later (for E = R™ see also [CC, Thm. 1]):

REMARK: Let E be a locally convex space and Y _(uy) a convergent series. Then
for each x € E the following are equivalent:

(1) 2 € S, we+ T (Do),

(2) V2' € E' 3 permutation m of N: &'(z) = Y po; ' (tn(i))-

In two papers [B1], [B2] from 1990 and 1993 Banaszczyk proved the following
extension of the Levy-Steinitz theorem - a result which here will be quoted as
“Banaszczyk’s rearrangement theorem”:

A metrizable, locally convex space E is nuclear if and only if the domain
of sums of each convergent series Y (ux) in E is given by the formula

Z(uk Zuk +rt Z(uk));
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in particular, S (Z(uk)) is a closed, affine subspace of E, and for each
reE:

TE S(Z(uk)) iffve' e E' :2'(z) € S(Z(z'(uk))>

The aim of this paper is to investigate the domains of sums in duals of metriz-
able spaces or, more generally, in (DF)-spaces in the sense of Grothendieck (in
fact, in [KK, p. 101] the authors write that “Steinitz-type problems for locally
convex spaces are poorly investigated”). Almost all natural spaces of functions
and distributions are metrizable spaces, or duals of metrizable spaces or, if not
of this type, then at least “generated” by spaces of this type. The only infinite
dimensional (DF)-space for which the Levy—-Steinitz theorem was known to hold
is the countable direct sum ¢ := @y R of copies of the scalar field R (this space
is the strong dual of the nuclear Fréchet space w := [[R); we refer to [KK,
Ex. 8.3.3]. Implementing the basic ingredients of [B1] and [B2] in an alterna-
tive way into locally convex spaces, we are able to say precisely which parts of
Banaszczyk’s theorem transfer to duals of metrizable spaces and which don’t.

Let us briefly describe the content of this article. After a short sketch of Ba-
naszczyk’s theorem in section 1, we show in section 2 the following rearrangement
theorem: if E is the dual of a nuclear, metrizable space, then each domain of
sums S(3"(ux)) is the translate of a subspace of E of a special form:

S(Z(uk)) = iuk + Fﬁ)c(Z(uk)).

If E is not isomorphic to ¢, then there is a convergent series whose domain of
sums is not closed — in particular, the Levy-Steinitz theorem in its original
formulation does not hold in the dual of a nuclear, metrizable space unless this
space equals the trivial space . In section 3 it is proved conversely that if E is
a dual of a nonnuclear metrizable space, then there is a convergent series whose
domain of sums does not have this special form.

An analysis of our approach using local convergence and bounded sets permits
to show that in a much larger class of (nonmetrizable) spaces the domain of sums
of all convergent series are affine subspaces; this class includes, for example:
the space H(K) of germs of holomorphic functions on a compact set K, the
space of Schwartz tempered distributions S’, the space £'(Q2) of distributions
with compact support, the space D(€2) of test functions for distributions, the
space D'(Q) of distributions, the space A(Q) of real analytic functions and its
dual A’(Q), for an open subset  of RV,
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Preliminaries

We shall use standard notation and notions from the theory of locally convex
spaces and Banach spaces (see e.g. [BPC]|, [G], [Ja], [Ju] and [MV]); for the
theories of operator ideals and s-numbers see [K], [P2] and [P3]. All locally
convex spaces E are real, by cs(E) we denote the collection of all continuous
seminorms, and by B(E) all absolutely convex, closed and bounded sets of E.
The dual E' endowed with the topology of uniform convergence on all bounded
sets is denoted by Ej. A sequence (p,) in cs(E) (or (B,) in B(E)) is said to
be a fundamental system of ¢s (E) (or B(E)) whenever it is increasing (natural
order) and for each p € cs(FE) (or B € B(E)) there is n such that p < p, (or
B C B,,). Recall that a locally convex space is metrizable if and only if it allows
a fundamental system (p,) of cs (E), and a locally convex space E is said to be
a (DF)-space if it has a fundamental system (B,) of B(E) and, moreover, each
intersection of any sequence of closed, absolutely convex zero neighbourhoods in
E is again a zero neighbourhood, provided it absorbs all bounded sets. Strong
duals of metrizable spaces are (DF). For a seminorm p on a vector space E
we write E, for the normed space (E/kerp, || - ||p), ||z + kerpl|, := p(z), and
for an absolutely convex set B C E the seminormed space (span B, mg), mp
the Minkowski gauge functional, is denoted by Ep. The canonical surjection
E — E, and injection Ep <+ E are denoted by 7, and ip, respectively. Clearly,
we have é Es C B C Bg, for the open and closed unit ball of Eg. The set B
is said to be a Banach or Hilbert disc whenever Ep is a Banach or Hilbert
space. For a locally convex space E and B € B(E) the natural embedding ip
is continuous, hence B = Bg, (B is closed in Eg). In complete spaces E all
B € B(E) are Banach discs (see [BPC, 5.1.27] or [MV, 23.14]). A locally convex
space E is called nuclear if for each p € cs(E) there is p < ¢ € cs (E) such that the
canonical linking map 7% : E; — E,, is nuclear, and E is said to be co-nuclear
if its dual is nuclear or, equivalently, for each B € B(E) there is B C C € B(E)
such that the embedding i, : Eg < E¢ is nuclear. Metrizable spaces and (DF)-
spaces are nuclear if and only if they are co-nuclear, and nuclear Fréchet spaces
and complete nuclear (DF)-spaces are in a one-to-one relation with respect to the
correspondence E — Ej (see [Ju, 7.8.2]). For further details on nuclearity we
refer to [Ju], [MV] or [P1]. A sequence (z,) in a locally convex space E is said to
converge locally whenever it is contained and converges in some Ep, B € B(E).
A locally convex space E satisfies the strict Mackey condition (see e.g. [BPC,
5.1.29]) if given any B € B(E) there is C € B(E), C D B, such that E and
E¢ induce the same topology on B. Clearly, in every locally convex space with
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the strict Mackey condition every convergent sequence converges locally. Every
metrizable space satisfies the strict Mackey condition ([BPC, 5.1.30]) as well as
every complete nuclear (DF)-space (use e.g. [Ju, 7.3.7]).

1. On Banaszczyk’s rearrangement theorem for nuclear Fréchet spaces

For later use (and in order to set up some further notation) we want to give
a short sketch of the proof of Banaszczyk’s rearrangement theorem (which still
follows the line of the original proof of Steinitz for R™).

Let > (ux) be a convergent series in a locally convex space E. The extended
domain of sums S¢ (3 (ux)) is defined as the set of all z € E which appear as
limits of convergent subsequences of rearrangements E(ur(k)). Moreover, let

A ) =N Zn(E ), Q) = Neo(Zn (),

m

where

Zm(Z(uk ={Zuk|IC{m m+1,...} finite },

and

Ap(d (ux ﬂz and Qg() _(ux ﬂcoz

The proof of part (a) in the following result is elementary (for a more general
formulation for abelian Hausdorff groups see [Bo, Ch. III, §5, Ex. 3]), and (b) is a

consequence of an easy Hahn-Banach, argument (check the proof of [B1, Lemma
6] or see [Bl]).

LEMMA 1.1: Let Y (ux) be a convergent series in a locally convex space E. Then
(a) S°(3(ur)) = Yoo uk + Ar (3 (uk)), whenever E is metrizable;
(b) Qe(X(we)) =T+ (X (ur))-

In the metrizable case this obviously gives the following chain of equalities and
inclusions:

LeEMMA 1.2: Let Y (ux) be a convergent series in a metrizable space E. Then

(B1) S(Z(uk)) C SC(Z(Uk))
= i_o:uk + Ag (Z(uk))

(B2) > uw+Qe(d(w))

k=1
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== Z Uk + F'L (Z(uk))
k=1

In nuclear metrizable spaces the inclusions (B1) and (B2) are even equalities
— these are the crucial steps in Banaszczyk’s paper [B1]. The proofs are conse-
quences of the following two lemmas (which are variants of [B1, Lemma 4 and
Lemma 8]). Here HS(T: X — Y) means the Hilbert-Schmidt norm of an
operator T acting between the Hilbert spaces X and Y.

LEMMA 1.3 (the “lemma of rounding off coefficients”): Let Hy and H, be two
Hilbert spaces such that H; C H, and

Then for y1,...,ys € Bu, andy € co{szk | J C {1,...,3}} there is a finite
set I C {1,...,3} such that

> Yk —y € Bu,.
I

LEMMA 1.4 (the “permutation lemma”): Let Hy, k = 1,2,3, be three Hilbert
spaces such that Hy C Hy C Hs and

HS(id:Hl%Hg)Sl, HS(lng‘—-)H;g)Sl/z

Then for vy,...,v, € By, and a € By, with a + Y ,_,vx € By, there is a
permutation o of {1,...,s} such that

m
a+ng(k) € By, forallm=1,...,s,
k=1

2. The rearrangement theorem for nuclear (DF)-spaces

In this section we will analyze the domain of sums of convergent series in complete
nuclear (DF)-spaces E. Clearly, R® and ¢ = @yR are examples of complete
nuclear (DF)-spaces for which the Levy-Steinitz theorem holds — and we will
show that these are in fact the only ones with this property, although all domains
of sums in complete nuclear (DF)-spaces turn out to be affine subspaces.

Take a convergent series .(ux) in a nuclear (DF)-space E, and recall from
the preliminaries that it converges locally, i.e., there is some B € B(FE) such that
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> (uk) converges in Ep. Moreover, let (B,,) be a fundamental system of B(E)
such that B; = B. Then it follows from Lemma 1.2 that, for each n,

Se, (D (ur)) € S5, (D (wr))
= i Ug + ABn (z(uk))

Y e +Qp, (O (w) =Y uk+ 5, (3 (),
k=1

k=1
where the index B,, indicates that we consider all sets involved with respect to

the convergent series > (ux) in Fg,. We obtain as an immediate consequence
that

(B1") clJss, O (w))

(B2') - Z ug + U @B, (Z(Uk))
k=

Define

Tioe (Y (u)) = JT5, O _(w))

and observe that this set is independent of the bounded set B and the fundamen-

tal system (B, ) we chose at the beginning. Since the sets I‘ll;n form an increasing

1
loc

family of subspaces of E, the set I';-_ is even a subspace of E.

THEOREM 2.1: Let E be a complete nuclear (DF)-space.
(a) For each convergent series Y (ux) in E the domain of sums S(_(ux)) is an
afline subspace of E; more precisely:

SO (w)) = i u + g (3 ().

(b) Assume E to be infinite dimensional and not isomorphic to ¢. Then there
is a convergent series y_(uy) in E such that the domain of sums S(3"(ux))
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is a nonclosed subspace of E; in particular:

S(Z(Uk)) = i ug + F,{,C (Z(uk)) G iuk 4Tt (Z(”k))'

As in the metrizable case statement (a) will follow from the fact that the above
inclusions (B1’) and (B2') are even equalities. To prove this, it is necessary to
adapt the lemma of rounding off coefficients and the permutation lemma (1.3
and 1.4 of section 1) to the (DF)-setting, and this is done in the following two
lemmas:

LEMMA 2.2: Let E be a vector space and By C B C C three Hilbert discs in E
such that

HS(i8 : Eg, = Ep) <1, HS(i%: Eg < E¢) <1/2.
Then for each convergent series Y .(ux) in Ep,

S5 (> (w)) € Sc (> (ur))-

Proof: Take '
] m

T = "}gnooz U (k) € Sf; (Z(uk))
k=1

(convergence in Eg) and extract an increasing subsequence (jme))e>2 of (jm)
such that for all £ > 2

Tr(k) € l/eB() for all k = jm(l) +1,... ajm(l+1)7

Im(e)
T — Z Un(k) € l/éB,
k=1
Jm(e+1)
T— Y Unxw €1/¢B;
k=1

this is possible: take first kg such that
Urk) € 1/2By  for all k > ko,

and then mg such that j,,, > ko and

jm
T — Zu,,(k) €1/2B for all m > my.
k=1
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Put m(2) := mg. Then for m > m(2)

Un(k) € 1/2By for all k > Jm(2)

Im
xz— Zu"(k) €1/2B for all m > m(2).
k=1

Select now m(3) > m(2) such that

Un(k) € 1/3By forall k > Jm(3)>
Jm
x - Zu,,(k) €1/3B for all m > m(3).
k=1
Then
Un(k) € 1/2By forall k = Jm) +1,... ,jm(g),
Jm(2)

T — Z Unk) € 1/2B,
k=1
Jm(3)

X — Z Un(k) € 1/2B,
k=1

etc. .... Consider now the Hilbert discs
1/¢By C 1/¢B C 1/¢C.
Clearly,
HS(E1/e8, < E17¢5) <1 and HS(Eip = Eijec) < 1/2.

Hence, by Lemma 1.4, for each ¢ > 2 there exists a permutation oy of
W{jm(é) +1,... ,jm(g+1)} such that for all m = jm(g) +1,... s Jm(e+1)

Fm (o) m
T — Z Up(k) — Z ud[(ﬂ'(k)) S I/EC.
k=1 k=Jme)+1

Clearly, this gives a permutation p of N such that (convergence in E¢)

T= Z Ug(k)s
k=1

hence z € S¢ (3 (ur))- 1
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LEMMA 2.3: Let E be a vector space and By C B two Hilbert discs in E such
that

HS(igo: Ep, < EB> <1.

Then for each convergent series Y (uy) in Ep,

Ap (Z(Uk)) =Q@s (Z(Ul«))~

Proof: According to the definitions Ag C @p. Take x ¢ Ag. This means, there
is mg such that
x & 7,%3 for all m > mg.

Choose € > 0 such that
(z+eB)N Zpmy =0,

and mjy > mg such that
ur € €/2B0 for all & > my.

We will show that
(z+¢/2B)NcoZy, =0,

hence z ¢ Q. If this is not the case, then there is
z€(z+¢e/2B)NcoZpy,.
Since HS(Ee/z B, = Ecp2 B) < 1, by Lemma. 1.3 there is 2 € Z,,,, with
z—Z€¢€/2B,
hence
z€ (2+¢€/2B)NZm, C (x+eB)N Zm,,
a contradiction. ]
Now we are prepared to give the

Proof of part (a) of Theorem 2.1: Let ) (ux) be a convergent series in a complete
nuclear (DF)-space E. Take a fundamental system (By,) of B(E) such that ) (ux)
converges in Epg,, all By, are Hilbert discs and

Hs(z"g:“: Ep, — EB"H) <1/2 foralln

(see the preliminaries and combine e.g. [Ju, 7.8.2(4)] with [Ju, 7.6.3(3)]). Then
the inclusion (B1’) by Lemma 2.2 and the inclusion (B2') by Lemma 2.3 are
equalities which gives the claim. |
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This proof obviously allows collecting a bit more information about domains
of sums in nuclear (DF)-spaces:

REMARK 2.4: Let 3 (ux) be a convergent series in a complete nuclear (DF)-
space E, and (B,,) a fundamental system of B(E) such that > (ux) converges in
Ep,. Then

SO k) =JSs. =55,

uk+UAB" = Zuk‘l‘UQBn
n k=1 n

ue +JTE, =Y we + T O (w).
n k=1

M

b
It

1

M

ol
i

1

The proof is clear from what was said before (note that all unions are indepen-
dent of the fundamental system (B,,) which hence can be chosen as in the above
proof of 2.1 (a)).

It remains to give a

Proof of part (b) of Theorem 2.1: 'The nuclear Fréchet space F := Ej is not
isomorphic to w := [[§R (recall that E is reflexive). Accordingly, we can apply
[DV, Theorem 5] to conclude the existence of a quotient G of F' which has a
continuous norm || - ||, but is not countably normable (a projective limit with
injective connecting mappings). We choose a fundamental system (] - ||») of
seminorms in G such that || - || < || - ||, and all the completions of the normed
spaces (G, || - ||l») are separable and reflexive (see e.g. [Ju, 7.6.3]). Since F and
G are nuclear Fréchet spaces, it follows that H = G} is a closed, topological
subspace of E = F;. For each n define

B, :={ze€G||z|l. <1}° C H(polarin H) and H,:=Hp,_.

We have H := ind,, H,, and since || - ||; is a norm on G, the Banach space H; is
dense in H. As G is not countably normable, we can apply [BMT, 2.9 and 2.6]
to conclude

UE" ¢H =H.

By [KK, Ex. 3.1.5], since H; is separable, there is a convergent series > (ux) in
H, such that its domain of sums in H; coincides with H;. The domain of sums
S (Z(uk)) in H is a subspace of H, which contains Hy but is not closed; indeed,
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if it is closed, it must coincide with H. On the other hand,
S(3 (w)) < \USm, (O (wn)) c | JH™ # H.

This is a contradiction. ]

In view of the remark made in the introduction the following consequence of
2.1 (b) seems to be notable:

COROLLARY 2.5: Let E be a complete and infinite dimensional, nuclear (DF)-
space which is not isomorphic to ¢. Then there is a convergent series y_(ug) in
E and some z € E such that for all 2’ € E’ there is a permutation © of N with

#(@) =Y ' (tn(ry),
k=1

but z ¢ S(3°(ux)).

We finish this section showing that our approach to the Levy-Steinitz type
theorems via local convergence and bounded sets covers a much larger class of
spaces than only nuclear (DF)-spaces — it turns out that co-nuclearity and not
nuclearity is the appropriate assumption needed.

Let E be a locally convex space in which every sequence converges locally, and
let > (ux) be a series in E which converges in, say, Ep,. Denote all absolutely
convex and bounded supersets of By by B. Clearly,

B B
= Z ug + U Ap
k=1 B
C ch + UQB
k=1 B
= Zuk + UFJ' =: Z’U:k + FIJ(_)C(Z(U‘/C))?
k=1 B k=1

1

loc
of the choice of By, and it can easily be shown that it is even a subspace of F.

where the notation of all new symbols is obvious; again the set I';-_ is independent

Another application of 2.2 and 2.3 gives the following extension of part (a) of
Theorem 2.1:
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THEOREM 2.6: Let F be a complete, co-nuclear space for which each convergent
sequence converges locally. Then the domain of sums of each convergent series
3" (ux) in E is an affine subspace,

SO (w)) = i uk + i (3 ().

Before we give a list of new examples of spaces such that each domain of
sums is affine, let us show that the preceding result even covers Banaszczyk’s
rearrangement theorem for metrizable spaces. For this it suffices to check the
following remark, since a metrizable space is nuclear if and only if it is co-nuclear,
and each convergent sequence in a metrizable space converges locally (see the
preliminaries).

REMARK 2.7: For each convergent series > (ug) in a metrizable, locally convex

T (3 (we) = Dise (3 (w)).-

space E

Proof: Clearly, by 1.1
ri, =rs =Nz *
B B m

C ﬂcoZmE =Tt
m

hence take z € [, co ZmE4 If (U,) is a decreasing basis of zero neighbourhoods
in E, then for every m there is

T € €0 N (z+ Up).

In particular, z, — z in E, and therefore z, — 2z in some E¢. Since

¢0Zy, O €0 Zmy1, the sequence (2,)n>m is contained in co Z,, for all m, hence
—F -

T € oLy - for all m. B

As announced, we finally give a list of natural examples:

Examples 2.8:

1. A Koéthe matrix A = (a,), is a sequence of scalar sequences satisfying
0 < an(f) < ang1(?) for each n, . The Kothe echelon space associated with
A is the Fréchet space defined by

A(A4) = {x e RN | pu(z) = Zan(z)lx(z)} for all n},
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endowed with the metrizable, locally convex topology generated by the funda-
mental system of seminorms (p,). The space A;{A) is nuclear if and only if for
each n there is m > n such that (an(i)/am(i))i € £;. If A\y(A) is nuclear, then
its strong dual is the complete nuclear (DF)-space

A (A)p = koo (4)
= {u e RN I In: |ufl, = sgp;u(i)l/an(i) < oo}

In fact, A;(A), = indy,fx(1/a,) is an (LB)-space and its topology can be
described by the seminorms

po(u) := supv(i)u(i)|

as v varies in the set of nonnegative sequences such that (an(i)v(i))i € o for
all n. For more details and examples we refer to [Bi] and [MV]. One of the
most important examples is the space s of rapidly decreasing sequences, which
corresponds to A1 (A) for the Kéthe matrix (a, (7)) := (™). The space of Schwartz
tempered distributions S’ on RV is isomorphic to s'. Moreover, C*[0,1] and
D(K), K a compact subset of RV with nonempty interior, are isomorphic to s.

2. Let K be a nonvoid compact subset of CV. The space H(K) of germs of
holomorphic functions on K is a complete nuclear (DF)-space. Its topology is
described as a countable inductive limit of Banach spaces in the following way:
let (U,) be a decreasing basis of open neighbourhoods of K satisfying U, D Uy11.
Let

in: H®(Uy) — H®(Up41)

be the restriction map which is absolutely summing. Then
H(K) = ind, H*(U,).

3. An (LF)-space E = ind, E, is a Hausdorff countable, inductive limit of an
increasing sequence of Fréchet spaces. An (LF)-space is called strict if every space
E, is a closed topological subspace of E,.1. In this case, each E, is a closed
topological subspace of E, and every convergent sequence in F is contained and
converges in a step E,. Accordingly, if E = ind, E, is a strict (LF)-space
and each step E, is nuclear, we can apply Banaszczyk’s original theorem to
conclude that the domain of sums of each convergent series in F is given by
the same formula. The most important example is the space of test functions for
distributions D(£2) on an open set 2 C RV . By a result of Valdivia [Va] and Vogt
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[V], D(€2) is in fact isomorphic to a countable direct sum ™ of copies of the space
5. We observe that the space Dy,,(€2) of test functions for ultradistributions of
Beurling type on an open subset 2 of RV is also a strict (LF)-space (see [BrMT]).

4. By the sequence space representation of Valdivia [Va] and of Vogt [V], the
space of distributions D’(Q) on an open subset Q of RV is isomorphic to a count-
able product (s')N of copies of the space s’. Therefore, it is a complete co-nuclear
space. Moreover, by the permanence properties of the strict Mackey condition
(see [BPC, 5.1.31]), every convergent sequence in D’(§2) converges locally, and
our Theorem 2.6 can be applied to D'(€2). More spaces have a similar structure:
the space of ultradistributions Dzw) (£2) of Beurling type and the space £, (€2) of
ultradifferentiable functions of Roumieu type on an open subset  of RV are also
complete co-nuclear spaces which are the countable, projective limit of complete
nuclear (DF)-spaces. In particular, they are subspaces of countable products of
complete nuclear (DF)-spaces, and again the permanence properties of the strict
Mackey condition ensure that Theorem 2.6 can be applied. We refer to [BrMT].

5. The space A() of real-analytic functions on an open subset § of RV is
endowed with a locally convex topology as follows: A{Q) = projx H(K), as K
runs over all the compact subsets of ¢ and H(K) is defined as in 2. Deep results
of Martineau from the 60’s (cf. [BDom)]) imply that A(f2) is an ultrabornological,
countable, projective limit of complete nuclear (DF)-spaces, and its dual A(Q);
is a complete nuclear (LF)-space in which every convergent sequence is contained
and converges in a step. Therefore, A(§2) and A(£)}, are both complete co-nuclear
spaces to which Theorem 2.6 can be applied {again these spaces satisfy the strict
Mackey condition by the argument given in 4.).

3. The converse

As already mentioned, Banaszczyk in [B2] proved the converse of his rearrange-
ment theorem from [B1]. Modifying his cycle of ideas, we will obtain the following

converse of our rearrangement theorem for nuclear (DF)-spaces from section 2
(Theorem 2.1(a)).

THEOREM 3.1: Let E be a (DF)-space such that each convergent sequence
converges locally. If for each convergent series 3 _(uy) in E

S (uw)) =D me +Tige (3 (wr)),
k=1

then F is nuclear.
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We will first prove an appropriate characterization of nuclear (DF)-spaces
which seems to be interesting in its own right. If X is an n-dimensional
Banach space, A, the Lebesgue measure on R™ and ¢: R® — X a linear bi-
jection, then

vol,(A) := An(¢7'A4), A a Borel set in X

gives a measure on the Borel sets of X. Although vol,(A) changes with ¢, the
ratio vol,, (4) vol,(B)~! for two Borel sets A and B is certainly independent. For
a linear bijection T: X — Y between two n-dimensional Banach spaces define
1/n
va(T) 1= (volu(TBx)/ vol,(By))"'™;
for a linear operator T: X — Y between two arbitrarily normed spaces set
v (T) ;= supv, (T: M — TM),

where n € N and the sup is taken with respect to all subspaces M of X such that
dim M = dimTM = n; put v,(T') = 0 whenever rank T' < n. For this definition
and the following (later very important) properties see [BB, Lemma 1] and also
(BI}:

(1) vn(T) < ITI1
(2) va(TS) < vn(T)vn(S).
(3) va(RTS) < IIRan(T)HlslI
(4) v, (T) = (H?:l Ji(T)) /n, whenever T acts between Hilbert spaces and §;

stands for the i-th Kolmogorov number.

(5) vn(T) > hn(T), where h,(T) stands for the n-th Hilbert number.
Moreover, denote for each 0 < ¢ < 1 the class of all operators T between
normed spaces such that
(n°v,(T)) € 4o
by U.. Part (b) of the next proposition is implicit in [BB, Lemma 2].

PROPOSITION 3.2: Let 0 <e < 1.
(a) Each composition of three 2-summing operators belongs to Ue.
(b) The composition of k > 5/¢ operators in e is nuclear.

Proof: (a) From Pietsch’s factorization theorem we know that such a composition
factorizes through a nuclear operator T: Hy — H3, Hy and H, Hilbert spaces.
Hence it suffices to check that T belongs to s: it is well-known that (8x(T)) € 4,
hence the assertion is an immediate consequence of

nfun(T) & ne (ﬁ 5(T)) o n;l; i 5:(T).
1
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{(b) For every composition T'= Ty o---0Tj of k > 5/¢ operators in U, we have

@ £
sup v (T) < suprsvg(Ti) =:¢ < 0.
¢

i=]1

On the other hand, for each n
n 1/n
5(T) < (T] 6u(m))
=1

n 1/n
< n(H h[(T)) (see the proof of [P1, 12.12.3])
=1

(2 (ﬁ nve(T)) 7

=1
Together we obtain
L 1/n mond\1/n
5 (Thn® < (H 7 stg(T)) < C(H 6—5) — 0, n— o0,
=1 =1

which shows that (6,(T)n) € ¢1, hence by [P2, 11.12.2] the sequence of approxi-
mation numbers (a,(T)) € ¢1. It is well-known that this assures the nuclearity
of T (see [P2, 18.6.3]). 1

As an immediate consequence we obtain the following corollary.

COROLLARY 3.3: Let E be a locally convex space. Then the following are
equivalent:

(1) E is nuclear.

(2) V0<e<1(30<e<1)Vp€cs(E)Ip<ge€cs(E):nb € De.
Dually, the following equivalence holds:

(1) E is co-nuclear.

(2') V0<e<1(I0 < e < 1)VB € B(E)3B C C € B(E) : i§ € B..

The implication (2) ~ (1) was stated in [BB, Lemma 2]. For our purposes we
need a characterization of nuclear (DF)-spaces via volume numbers which uses
bounded sets and continuous seminorms simultaneously — based on ideas of
[Ju, 6.4.2] we prove:

ProPoOSITION 3.4: For every (DF)-space E the following are equivalent:
(1) FE is nuclear.
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(2) VO<e<1(30 < e < 1)VB € B(E)Vp € cs(E) : mpip € V.

Proof: The proof of (1) ~ (2) is easy: clearly, in every nuclear space E each
mapping mpip can be written as a composition of three nuclear maps, hence
mpip € B, for each 0 < € < 1 (Lemma 3.2). Conversely, assume that (2) holds
for some 0 < € < 1 and take a set B € B(E). By Corollary 3.3 it suffices to
show that i§ € U, for some B C C € B(E). Take a fundamental system (By,) of
bounded sets such that

B, =B and 2B, C B, foralln.
Assume that
in=1ipr €0, foralln> L.
By definition, for every n there is a k,-dimensional subspace M,, of Ep such that

dim M,, = dimi, M, = k, > kn_1,
k& vk, (in: My — inMy) > n.

It is well-known (see e.g. [DF, 6.3]) that for each n there is a subspace G, of
some £7(™ and a linear bijection

Jn: inMy — Gna

71l = 1,
it G — in M, < 2.

By the Hahn-Banach theorem j, has an extension j,: Ep, — /7™ with equal

norm, and we know fom [Ju, 4.3.12] that there is an operator Q,, € L(E, IZZS("))

such that
||Qn|EB,. “ <2

|@nh = Gnklloo < 1/4lR||5s, for all b € inMy;

summarizing, we get the following diagram:

e
J

n

n

i i)
Eg——
\] i Jn

Mnc_n') ann I Jﬂ

lg'é(")
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We prove that @Q,, is invertible on i, M,, and
1Qn" : Quin My — inMal| < 4;
indeed, for h € i, M,
(Mg, = lin inbliEs, < 2ljahllc
< 2[nh — @nhlloo + 2[|@nhllco < 1/2[|Al£5,, + 2[|Qnhllco,
hence

1Plles, < 4l1@nhlloo-

The norm estimate for Q! can now be used to show that for each n

vk, (M <25 1 M) = v, (M 2 i Moy 225 Gy 725 i M,,)

. -1 .
< 20, (My -2 i My 25 QuinM, & i M, 2% G,)

< 8wy, (Mn —l—"—> tnMp &) QninMn)a

hence '
1/8n < 1/8kS vk, (Mn =2 inM,,)
< Kok, (M 225 i M 25 QuinM,),
and finally _
1/8n < kg, (Ep 3 E 25 g7).
Define

V:={)Qn' By C E;
N

V absorbs bounded sets and is hence a zero neighbourhood in the (DF)-space E:
clearly, for each k there is A > 0 such that

k
B C A ﬂ Q' By,

n=1

and for n > k we have 2By C B, hence
QQan C Qan C 2B€;';(")'

Now observe that @,V C B ymn) for each n which assures that there are operators

Qn: By — €7 with ||@,|| < 1 and such that the following diagram commutes:

Ep PO )

v

Ey
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(as usual, By = Em, and my = T, ). Since by assumption (mfvy,(nvip)) €
{,, we obtain a contradiction:
1/8n < kpvk, (QniB)
< kn v, (@nWViB) < kg, (mvig). 1

We need the following deep result of Banaszczyk [B2, Lemma 4] (which among
others is based on Milman’s quotient subspace theorem from local Banach space
theory). Here gp(A) denotes the subgroup generated by a subset A of a group
G; moreover, for a seminorm p on a vector space E we write B, for the closed

unit ball with respect to p, and dp(z, H) for the distance of z € E and H C E
with respect to p.

THEOREM 3.5: Let E be a vector space and ¢ > p two seminorms on E such
that

(71'5: Eq — Ep) g IR

Then for each finitely generated subgroup G C E, each o € spanG and each
~ > 0 there is a finitely generated group G O G satisfying

(1) Gi1=gp(GiNBy),
(2) dp(aa Gl) > dp(a7 G) -7
The following consequence will be crucial.

COROLLARY 3.6: Let E be a locally convex space, B € B(E) and p € cs(E) such
that myig & Vo.1. Then there is a subgroup G of E such that

(1) G =gp(GN1/mB) for all m,
(2) 1/2G¢ G,

Proof: Take a € Eg such that p(a) > 0 (mpip # 0!). Without loss of generality
we may assume that

p(a)=2 and p<|-llp on Ep.
Define the finitely generated subgroup Gg := 2aZ of Ez. Obviously,
pla —2az) =2|1 — 22| forall z€Z,

hence dp(a,Gy) = 2. Clearly, (Ep), is an isometric subspace of E;, hence the
canonical map

(ﬂ%: Eg — (EB)p) ¢ Vo.1.
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By Banaszczyk’s Theorem 3.5 there is a finitely generated subgroup Gy C G C
Epg such that
Gl = gp(Gl N B)7

dy(a,G1) > dy(a, Go) — 1/2.

Next apply Banaszczyk’s result 3.5 to Gy, 2| - ||, 2p and 1/2: there is a finitely
generated subgroup Gy 2 G; such that

G2 = gp(G2 n %B),

1 1
dap(a,Go) > dypla,Gy) — 2 hence dp(a,Gq) > dp(a,G1) — 2

Proceeding this way, one gets an increasing sequence of finitely generated sub-
groups G, O G, -1 such that

1
Gn = gp(Gn N EB)’
1
dy(a,Gr) > dp(a,Gn-1) — 3
Define the subgroup

G::UGn

of E. Then for all m
G = gp(GN1/mB);

indeed, for m and z € G we have z € GG,, for some n > m, hence

T = Z g; withg; € G,N1/nBC GN1/mB.
finite

Moreover, 2a € Gy C G, but

dp(a,G) = inf{dp(a, G) | k € N}
k
1
> inf{dy(a,Go) =Y 57 | ke N}
£=1

1
:2—2:52:1,
=1

herice a ¢ [e 1

Finally, we are prepared to give a
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Proof of Theorem 3.1: Assume that E is not nuclear. Then we know from
Proposition 3.4 that

mpin € Vo

for some B € B(E) and p € cs(E). Hence by Corollary 3.6 there are a subgroup
G of E and an a € F such that

(1) G =gp(GN1/mB) for all m,

(2) 24€G,buta g G".

Take a fundamental system (B,,) of B(E) such that B; = B. By (1) we have
for each m the following finite representations of 2a:

s(m)
20 = Z wit, wi € GN1l/mB.
i=1
Define the series > (ux) by
(ug) = (wy, —wr1,... ,w:(l), —w;(l),wf, —w?, ... ,wg(z), —wf(z), )

Obviously, the series > (ug) is convergent in Ep, and we have (convergence in
EBI)

0= iuk and 2a€ AC UABn.
k=1 n

We now show that a ¢ |J,, Ap, which then contradicts the fact that (by assump-
tion and Remark 2.4)

S(Q_(u)) =J 45, = Tice
is convex: assume that a € Ap, for some n. Since for all m
Zpm C gp{wf|i=1,...,5(k) and keN}cCQG,
we get that
—FE — .
a€Ap, =(\Z." cG™ G,
m
a contradiction. 1

An easy analysis of the preceding proof gives slightly more:

REMARK 3.7: Let E be a locally convex space such that for some B € B(E) and
D € cs(E)
ﬂpig ¢ ’1]04;
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Then there is some Eg-convergent series Y (uy) and there is a € Eg such that
2a€ﬂZm:A, a¢ﬂ?ﬁl::AP.
m m

This remark shows that our method also gives a new proof of the converse
of Banaszczyk’s rearrangement theorem for metrizable spaces; indeed, if E is a
nonnuclear, metrizable space such that for each convergent series > (ug)

S(Z(“k)) = z ug +IF (Z(Uk)),
k=1
then by Lemma 1.2 for each such series

Ap(d ()

is a subspace. But this contradicts Remark 3.7, since A, D Ag D A and the
following counterpart of Proposition 3.4 assures the existence of an appropriate
B and p.

PRrROPOSITION 3.8: For every metrizable space the statements (1) and (2) of
Proposition 3.4 are equivalent.

Proof: That (1) implies (2) follows as in Proposition 3.4. Hence assume that E
satisfies (2) for some 0 < ¢ < 1. Let p € cs(E); by Corollary 3.3 it suffices to
show that there is some p < g € cs(E) with 78 € U,. Fix a fundamental system
(pn) of es(E) such that

pn>pr=p foralln,

and assume that
mpi=nh €0 foralln > 1.

By definition for every n there is a k,-dimensional subspace M,, of E,,, such that
dim M,, =dimnr, M, =k, > k,_1,
kv, (Tn : My, — 1, M,,) > n.

The canonical embedding i, : M, < E,_ being of finite rank has a finite repre-
sentation

in= D ) ®mp, ;) € M, @ By,
Define the operator
R, = Zcp; ®zj: M, — E;
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clearly, ¢, = 7p, R,, for all n, hence

kflvkn (ﬂ-PRﬂ) = kflvkn (Wnﬂ-pn Rn)

= ki vg, (Tnin) = kS vk, (mn: My, — m,M,) > n.
n n n n

Then the closed, absolutely convex hull B of |J, R,Buy, is a bounded set in
E; indeed, for k given, the set {z € E | pi(z) < 1} absorbs the bounded set
U¥ R.Bu,,, and for n > k

R,By, C {x cFE | pn(z) < 1} C {:L' ekl | pr(z) < 1}.

Observe now that R, Bys, C B for all n, hence there are operators IAZn: M, —
Eg with norm < 1 such that

commutes. But then

n < kpvg, (mpRy) = kr vk, (WpiBﬁn) < knvk, (7piB)

contradicts the fact that myip € V.. |
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